Sains Malaysiana 52(8)(2023): 2377-2394

http://doi.org/10.17576/jsm-2023-5208-15

 

Radiological Impact Assessment of Natural Radionuclides and Heavy Metal Contamination in Industrial Tin-Tailing Processing Effluent

(Penilaian Impak Radiologi Radionuklid Tabii dan Pelumusan Logam Berat dalam Efluen Industri Pemprosesan Amang)

 

NURSYAMIMI DIYANA RODZI1, AZNAN FAZLI ISMAIL1,2,3,*, MUHAMMAD ABDULLAH RAHMAT1, ELI SYAFIQAH AZIMAN1 & WAN MOHD RAZI IDRIS3,4 & TUKIMAT LIHAN4

 

1Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Center for Water Research and Analysis, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 10 November 2022/Accepted: 18 July 2023

 

Abstract

This study investigates the radiological hazard and heavy metal contamination of water effluents from Malaysian tin-tailing processing plants. Samples were collected from retention ponds in seven separate tin tailing processing plants scattered throughout the state of Perak, Malaysia. Samples were analysed for radioactivity and heavy metal concentration using Gamma-ray Spectrometry System and Inductively Coupled Plasma-Mass Spectrometry, respectively. The analysis indicates that the concentration of Radium-226 (226Ra), Radium-228 (228Ra), and Potassium-40 (40K) in samples ranged from 2.4 - 34.9 Bq/l, 0.8 - 14.7 Bq/l, and 19.5 - 299.4 Bq/l, respectively. These levels surpassed the control limits (5 Bq/l and 10 Bq/l for 226Ra and 228Ra) set by the regulatory authority. The analysis of the heavy metal contamination showed that the concentration of Arsenic (As) and Lead (Pb) werehigher than the Maximum Concentration Level (MCL) of 0.01 and 0.015 mg/L, respectively. Further evaluation of radiological impact showed that the average Annual Effective Doses (AED) by water ingestion and AED for external exposure are 1.43±0.67 mSv/y and 1.71±0.79 mSv/y, respectively. While for non-carcinogenic and carcinogenic risk assessments, the value of hazard index and lifetime cancer risk is 2.1×10-10 and 1.2×10-7, respectively. These research findings suggest that effective treatment of the effluent should be implemented before discharge into the drainage system to prevent the accumulation of radionuclides and heavy metals in the environment, which may pose a risk to public health.

 

Keywords: Excess lifetime cancer risk; heavy metal; natural radionuclide; radiological impact assessment; tin-tailing

 

Abstrak

Kajian ini bertujuan menentukan bahaya radiologi dan pelumusan logam berat daripada efluen kilang pemprosesan amang. Sampel telah diambil daripada kolam tadahan di tujuh kilang pemprosesan amang di sekitar negeri Perak, Malaysia. Keradioaktifan dan kepekatan logam berat dalam sampel dianalisis masing-masing menggunakan Sistem Spektrometri Sinar-Gama dan Spektrometri Jisim Plasma Gandingan Teraruh. Hasil analisis mendapati kepekatan Radium-226 (226Ra), Radium-228 (228Ra) dan Kalium-40 (40K) dalam sampel masing-masing adalah antara 2.4 – 34.9 Bq/l, 0.8 – 14.7 Bq/l, dan 19.5 – 299.4 Bq/l. Nilai kepekatan ini didapati melepasi nilai had kawalan (5 Bq/l dan 10 Bq/l bagi 226Ra dan 228Ra) seperti yang ditetapkan oleh pihak berkuasa. Analisis terhadap pelumusan logam berat mendapati kepekatan Arsenik (As) dan Plumbum (Pb) adalah lebih tinggi daripada Tahap Kepekatan Maksimum (MCL) iaitu masing-masing 0.01 dan 0.015 mg/l. Penilaian impak radiologi selanjutnya mendapati bahawa purata Dos Berkesan Tahunan (AED)  berpunca daripada pengambilan air efluen dan dedahan luaran masing-masing ialah 1.43±0.67 mSv/tahun dan 1.71±0.79 mSv/tahun. Manakala bagi penilaian risiko bukan karsinogen dan karsinogen nilai pengiraan indeks risiko dan penilaian risiko kanser sepanjang hayat (LCR) masing-masing bernilai 2.1×10-10 dan 1.2×10-7. Hasil kajian ini mencadangkan rawatan berkesan terhadap efluen mesti dilakukan sebelum dibuang ke sistem perparitan bagi mengelakkan pengumpulan radionuklid dan logam berat di alam sekitar yang boleh menjejaskan kesihatan awam.

 

Kata kunci: Amang; logam berat; penilaian impak radiologi; risiko kanser sepanjang hayat; radionuklid tabii

 

REFERENCES

Abdu Nasiru Muhammad, Aznan Fazli Ismail & Nuraddeen Nasiru Garba. 2022. Annual effective dose associated with radioactivity in drinking water from tin mining areas in north-western Nigeria. Journal of Radiation Research and Applied Sciences 15(3): 96-102. https://doi.org/10.1016/j.jrras.2022.06.008

Abdullahi Shittu, Aznan Fazli Ismail & Supian Samat. 2019. Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia. Nuclear Engineering and Technology 51(1): 325-336. https://doi.org/10.1016/j.net.2018.09.017

AELB. 2010. Akta Perlesenan Tenaga Atom 1984. Peraturan-Peraturan Pelesenan Tenaga Atom (Perlindungan Sinaran Keselamatan Asas) 2010.

Ahmad, S. & Jones, D. 2013. The importance and significance of heritage conservation of the ex-tin mining landscape in Perak, Malaysia, the abode of grace. The Asian Conference on Asian Studies 2013: 38-54.

Ahmed, M., Matsumoto, M., Ozaki, A., Van Thinh, N. & Kurosawa, K. 2019. Heavy metal contamination of irrigation water, soil, and vegetables and the difference between dry and wet seasons near a multi-industry zone in Bangladesh. Water (Switzerland) 11(3). https://doi.org/10.3390/w11030583

Ajekiigbe, K.M., Olise, F.S., Sejlo, G.T., Yinusa, S.T., Amadi, V.N. & Olaniyi, H.B. 2017. Gamma spectrometric analysis of soil, sediment and water samples of granitic-Type solid mineral mining activities. Journal of Radiation and Nuclear Applications An International Journal 2(1): 29. https://doi.org/10.18576/jrna/020105

Al-Harmali, A. 2020. Assessment of natural radioactivity hazards in selected water samples collected from northern regions of Oman. IOP Conf. Series: Materials Science and Engineering. No. 757.

Alidadi, H., Belin, S., Sany, T., Zarif, B., Oftadeh, G. & Mohamad, T. 2019. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environmental Health and Preventive Medicine 24(59): 1-17.

Almayahi, B.A., Tajuddin, A.A. & Jaafar, M.S. 2012. Radiation hazard indices of soil and water samples in northern Malaysian Peninsula. Applied Radiation and Isotopes 70(11): 2652-2660. https://doi.org/10.1016/j.apradiso.2012.07.021

Alnour, I.A., Wagiran, H., Ibrahim, N., Hamzah, S. & Elias, M.S. 2017. Determination of the elemental concentration of uranium and thorium in the products and by-products of amang tin tailings process. AIP Conference Proceedings 1799. https://doi.org/10.1063/1.4972913

ANZECC & ARMCANZ. 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

Arshad, H., Zahid Mehmood, M., Hussain Shah, M. & Abbasi, A.M. 2020. Evaluation of heavy metals in cosmetic products and their health risk assessment. Saudi Pharmaceutical Journal 28(7): 779-790. https://doi.org/10.1016/j.jsps.2020.05.006

ATSDR. 2020. Support Document to the 2019 Substance Priority List. April: 1-9. www.atsdr.cdc.gov/SPL

ATSDR. 2015. Arsenic - ToxFAQsTM. ToxFAQs. 2015. http://www.atsdr.cdc.gov/toxfaqs/index.asp

DOE Malaysia. 2009. Environmental Quality (Industrial Effluent) Regulations 2009. Percetakan Nasional Malaysia Berhad.

Dunca, A.M. 2018. Water pollution and water quality assessment of major transboundary rivers from Banat (Romania). Journal of Chemistry 2018: 9073763. https://doi.org/10.1155/2018/9073763

Eli Syafiqah Aziman, Aznan Fazli Ismail, Siti Fatimah Jubri, Muhammad Abdullah Rahmat & Wan Mohd Razi Idris. 2021. Environmental impact assessment of post illegal mining activities in Chini Lake with regards to natural radionuclides and heavy metals in water and sediment. Journal of Radioanalytical and Nuclear Chemistry 330(3): 667-683. https://doi.org/10.1007/s10967-021-08049-4

El-Gamal, H., Sefelnasr, A. & Salaheldin, G. 2019. Determination of natural radionuclides for water resources on the west bank of the Nile River, Assiut Governorate, Egypt. Water 11(2): 311. https://doi.org/10.3390/w11020311

Gregory, A.O., Emmanuel, E. & Ezekiel, A.O. 2013. Gamma spectroscopy analysis of produced water from selected flow stations in Delta State, Nigeria. International Journal of Environmental Monitoring and Analysis 1(5): 167-174. https://doi.org/10.11648/J.IJEMA.20130105.11

Hamzah, Y., Mardhiansyah, M. & Firdaus, L.N. 2018. Characterization of rare earth elements in tailing of ex-tin mining sands from Singkep Island, Indonesia. Aceh International Journal of Science and Technology 7(2): 131-137. https://doi.org/10.13170/aijst.7.2.8622

IAEA. 2014. A Procedure for the Rapid Determination of 226Ra and 228 Ra in Drinking Water by Liquid Scintillation Counting. International Atomic Energy Agency.

IAEA. 1989. Technical Report Series No. 295: Measurement of Radionuclides in Food and the Environment.

Ismail Bahari, Nasirian Mohsen & Pauzi Abdullah. 2007. Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry. Journal of Environmental Radioactivity 95(2-3): 161-170. https://doi.org/10.1016/j.jenvrad.2007.02.009

Ismail, B., Yasir, M.S., Redzuwan, Y. & Amran, A.M. 2003. Radiological environment risk associated with different water system in amang factory. Pakistan Journal Of Biological Science 6(17): 1544-1547.

JMG. 2016. Malaysian Minerals Yearbook 2016. Department of Mineral and Geoscience Malaysia.

Kanayochukwu, J., Ijeoma, H. & Onyenezi, J. 2019. Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria. Toxicology Reports 6: 449-456. https://doi.org/10.1016/j.toxrep.2019.05.007

Khoirul Solehah Abdul Rahim, Zalita Zainuddin, Mohd Idzat Idris, Wahmisari Priharti, Murtadha S.H. Aswood, Solehah Khoirul Abdul Rahim, Zalita Zainuddin, Wahmisari Priharti & Murtadha Aswood Sh. 2020. Determination of the radiological risk from the natural radioactivity in irrigation at selected areas of Peninsular Malaysia. Sains Malaysiana 49(6): 1439-1450. https://doi.org/10.17576/jsm-2020-4906-22

Matthew Tikpangi Kolo, Siti Aishah Binti Abdul Aziz, Mayeen Uddin Khandaker, Khandoker Asaduzzaman & Yusoff Mohd Amin. 2015. Evaluation of radiological risks due to natural radioactivity around lynas advanced material plant environment, Kuantan, Pahang, Malaysia. Environmental Science and Pollution Research 22(17): 13127-13136. https://doi.org/10.1007/s11356-015-4577-5

Li, R., Kuo, Y.M., Liu, W.W., Jang, C.S., Zhao, E. & Yao, L. 2018. Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China. Environmental Geochemistry and Health 40(4): 1585-1599. https://doi.org/10.1007/S10653-018-0073-4

Liang, Y., Yi, X., Dang, Z., Wang, Q., Luo, H. & Tang, J. 2017. Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. International Journal of Environmental Research and Public Health 14(12): 1557. https://doi.org/10.3390/ijerph14121557

Mohammadi, A.A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M.H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N. & Ghaderpoori, M. 2019. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 6: 1642-1651. https://doi.org/10.1016/j.mex.2019.07.017

Mohsen Nasirian, Ismail Bahari & Pauzi Abdullah. 2008. Assessment of natural radioactivity in water and sediment from amang (tin tailing) processing ponds. The Malaysian Journal of Analytical Sciences 12(1): 150-159.

Muhamad Samudi Yasir, Amran Ab Majid, Redzuwan Yahaya, Ismail Bahari & Wong Siew Kim. 2007. Impak aktiviti pemprosesan amang sistem tertutup ke atas kualiti air dan sedimen setempat. The Malaysian Journal of Analytical Sciences 11(2): 370-378.

Muhammad Abdullah Rahmat, Aznan Fazli, Eli Syafiqah, Nursyamimi Diyana, Faizal Mohamed & Irman Abdul. 2022. The impact of unregulated industrial tin-tailing processing in Malaysia: Past, present and way forward. Resources Policy 78: 102864. https://doi.org/10.1016/j.resourpol.2022.102864

Muhammad Abdullah Rahmat, Aznan Fazli Ismail, Nursyamimi Diyana Rodzi, Eli Syafiqah Aziman, Wan Mohd Razi Idris, Tukimat Lihan, Wan Mohd Razi Idris & Tukimat Lihan. 2021. Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry. Nuclear Engineering and Technology 54(6): 2230-2243. https://doi.org/10.1016/j.net.2021.12.013

Nasirian Mohsen, Bahari Ismail, Pauzi Abdullah & Azizah Jaafar. 2007. Gamma hazards and risk associated with norm in sediment from amang processing recycling ponds. The Malaysian Journal of Analytical Science 11(1): 314-323.

Ogungbemi, K.I., Adedokun, M.B., Ibitoye, A.Z., Oyebola, O.O. & Owoade, R.L. 2023. Estimation of radiological impact of the activities of olusosun dump site on workers and dwellers of Olusosun, in Lagos Southwest Nigeria. Journal of Radiation Research 64(1): 53-62. https://doi.org/10.1093/jrr/rrac067

Post, G. 2003. Environmental Assessment and Risk Analysis Element: Dermal Absorption of Inorganic Arsenic from Water. New Jersey Department of Environmental Protection Division of Science, Research and Technology.

Rehman, K., Fatima, F., Waheed, I. & Hamid Akash, M.S. 2018. Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry 119(1): 157-184. https://doi.org/10.1002/jcb.26234

Renu, K., Chakraborty, R., Myakala, H., Koti, R., Famurewa, A.C., Madhyastha, H., Vellingiri, B., George, A. & Gopalakrishnan, A.V. 2021. Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium) - induced hepatotoxicity - A review. Chemosphere 271: 129735. https://doi.org/10.1016/j.chemosphere.2021.129735

Saha, N., Safiur Rahman, M., Ahmed, M.B., Zhou, J.L., Ngo, H.H. & Guo, W. 2017. Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management 185: 70-78. https://doi.org/10.1016/j.jenvman.2016.10.023

Sanusi, M.S.M., Ramli, A.T., Hashim, S. & Lee, M.H. 2021. Radiological hazard associated with amang processing industry in Peninsular Malaysia and its environmental impacts. Ecotoxicology and Environmental Safety 208: 111727. https://doi.org/10.1016/j.ecoenv.2020.111727

Shu’aibu, H.K., Khandaker, M.U., Baballe, A., Tata, S. & Adamu, M.A. 2021. Determination of radon concentration in groundwater of Gadau, Bauchi State, Nigeria and estimation of effective dose. Radiation Physics and Chemistry 178: 108934. https://doi.org/10.1016/j.radphyschem.2020.108934

Siti Khairunnisaq Rudzi, Ho Yu Bin & Intan Idayu Abd Khani. 2018. Heavy metals contamination in paddy soil and water and associated dermal health risk among farmers. Malaysian Journal of Medicine and Health Sciences 14: 2-10.

Song, D., Zhuang, D., Jiang, D., Fu, J. & Wang, Q. 2015. Integrated health risk assessment of heavy metals in Suxian County, South China. International Journal of Environmental Research and Public Health 12(7): 7100-7117. https://doi.org/10.3390/ijerph120707100

UNSCEAR. 2000. Sources and effects of ionizing radiation, united nations scientific committee on the effects of atomic radiation UNSCEAR 2000 report to the general assembly. UNSCEAR Report I: 1-556.

USEPA. 2004. Risk Assessment Guidance for Superfund (RAGS) Volume I. Human Health Evaluation Manual (HHEM). Part E. Supplemental guidance for dermal risk assessment. USEPA 1 (540/R/99/005). https://doi.org/EPA/540/1-89/002

WHO. 2006. Guidelines for Drinking-Water Quality. Geneva: World Health Organization.

Zaini Hamzah, Nor Monica Ahmad & Ahmad Saat. 2009. Determination of heavy minerals in ‘amang’ from Kampung Gajah ex-mining area. The Malaysian Journal of Analytical Sciences 13(2): 194-203.

 

*Corresponding author; email: aznan@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous